
NBBinder

Jul 06, 2020

Contents:

1 Overview 3

2 Installation 11

3 Usage 13

4 Requirements 27

5 Credits 29

6 License 31

7 nbbinder 33

8 Indices: 41

Python Module Index 43

Index 45

i

ii

NBBinder

THIS PACKAGE HAS BEEN ARCHIVED DUE TO NAMING COLLISION. It is survived by the package
NBJoint.

NBBinder generates a navigable book-like structure to a collection of Jupyter notebooks.

Contents: 1

https://github.com/rmsrosa/nbjoint

NBBinder

2 Contents:

CHAPTER 1

Overview

NBBinder generates a navigable book-like structure for a collection of Jupyter notebooks.

1.1 Description

The main function in this module is called bind(). It reads a collection of Jupyter notebooks from a given directory
and, upon configuration,

• adds a table of contents to a selected notebook file, with links to the other notebooks;

• adds a header cell to each notebook, with custom information about the collection of notebooks;

• adds a badge cell to each notebook, with links to opening the notebooks in different platforms or formats. For
instance, on can include a Google Colab badge and a Binder badge, with links to opening each notebook in
these cloud computing plataforms, a badge for showing slides as exported with nbconvert, and so on.

• adds navigator links, at the beggining and at the end of each notebook, with links to traverse to the previous
and the next notebook, and to other selected notebooks, such as the Table of Contents and the References;

• exports the notebooks to other formats using nbconvert, so that, for example, slides can be generated auto-
matically and in bulk.

1.2 Functions

The function bind() can be called in two different ways:

• directly with the arguments to be applied in the bindind process; or

• with a configuration file as argument, with the configuration file containing the desired arguments.

The bind() function calls the following functions in this module, which take care of each of the main features of the
notebook binder:

3

NBBinder

• reindex(): reorder the notebooks when a new notebook is to be inserted between others or whether there are
gaps in the indices;

• add_contents(): adds the Table of Contents to a selected “Contents” file;

• add_headers(): adds a header to each notebook with a given custom information;

• add_badges(): adds a badge cell to each notebook with one or more badges to open up the document in
different platforms or formats;

• add_navigators(): adds navigation bars to the top and bottom of each notebook.

• export_notebooks(): exports the notebooks to any of the different formats as provided by nbconvert:
HTML, LaTeX, PDF, Reveal JS, Markdown (md), ReStructured Text (rst), executable script. Notice that
add_badges() can be used to link to the exported notebooks, useful, for instance, to access slides of the
notebooks for presentation in class.

Each of these later functions can be called separately, if only some of these features are desired.

When running nbbinder.py as a script, it expects the filename of the configuration file and calls the function
bind(config_file), where config_file is the name of the configuration file.

Look at the documentation for more information on each of these functions and for the other functions available on
this package.

1.3 Examples

1.3.1 A little taste

For instance, upon proper configuration (see section Notebooks with slides and cloud computing badges below), the
collection of bare notebooks in the folder Water bare collection is bound to the folder Water bound collection, and, in
particular, the file 00.00-Water_Contents.ipynb receives a table of contents, a header, navigator cells and the badges

Below we show some examples in more details.

1.3.2 Example with configuration file

The most convenient way to use the module, or script, is via a configuration file. The configuration files are written in
the YAML format.

For instance, consider the following config_nb_alice.yml, which is included in the tests folder of the repos-
itory:

Configuration file for the python module NBBinder

version: 0.13a

path_to_notes: nb_builds/nb_alice

contents:
toc_nb_name: 00.00-Alice's_Adventures_in_Wonderland.ipynb
toc_title: Table of Contents
show_index_in_toc: True

header: "NBBinder test on a collection of notebooks named after the chapters of 'Alice
→˓'s Adventures in Wonderland'" (continues on next page)

4 Chapter 1. Overview

https://pypi.org/project/nbconvert/
https://github.com/rmsrosa/nbbinder/blob/master/tests/nb_source/nb_water
https://github.com/rmsrosa/nbbinder/blob/master/tests/nb_builds/nb_water
https://github.com/rmsrosa/nbbinder/blob/master/tests/nb_builds/nb_water/00.00-Water_Contents.ipynb
https://colab.research.google.com/github/rmsrosa/nbbinder/blob/master/tests/nb_builds/nb_water/00.00-Water_Contents.ipynb
https://mybinder.org/v2/gh/rmsrosa/nbbinder/master?filepath=tests/nb_builds/nb_water/00.00-Water_Contents.ipynb
https://en.wikipedia.org/wiki/YAML

NBBinder

(continued from previous page)

navigators:
core_navigators:
- 00.00-Alice's_Adventures_in_Wonderland.ipynb

show_nb_title_in_nav: False
show_index_in_nav: False

Then, we import the module and use the bind() function with this configuration file as argument:

import nbbinder as nbb
nbb.bind('config_nb_alice.yml')

Or we execute it as a script in the command line:

./nbbinder.py config.yml

The key path_to_notes indicates that the notebooks are in the folder nb_builds/nb_alice, relative to where
the script that calls the function bind() is located. In this folder, one finds the following notebooks, properly indexed:

00.00-Alice's_Adventures_in_Wonderland.ipynb
01.00-Down_the_Rabbit-Hole.ipynb
02.00-The_Pool_of_Tears.ipynb
03.00-A_Caucus-Race_and_a_Long_Tale.ipynb
04.00-The_Rabbit_Sends_in_a_Little_Bill.ipynb
05.00-Advice_from_a_Caterpillar.ipynb
06.00-Pig_and_Pepper.ipynb
07.00-A_Mad_Tea-Party.ipynb
08.00-The_Queen's_Croquet-Ground.ipynb
09.00-The_Mock_Turtle's_Story.ipynb
10.00-The_Lobster_Quadrille.ipynb
11.00-Who_Stole_the_Tarts?.ipynb
12.00-Alice's_Evidence.ipynb

The function bind() then reads the notebooks and binds them accordingly. In particular, the following table of
contents is added to the file indicated by the key toc_nb_name in the configuration file:

Table of Contents
Alice's Adventures in Wonderland
1. Down the Rabbit-Hole
2. The Pool of Tears
3. A Caucus-Race and a Long Tale
4. The Rabbit Sends in a Little Bill
5. Advice from a Caterpillar
6. Pig and Pepper
7. A Mad Tea-Party
8. The Queen's Croquet-Ground
9. The Mock Turtle's Story
10. The Lobster Quadrille
11. Who Stole the Tarts?
12. Alice's Evidence

See 00.00-Alice’s_Adventures_in_Wonderland.ipynb for the actual bound version of the first notebook. Notice the
header in the begining of the notebook and the navigator cells after the header and at the end of the notebook.
Experiment with the navigator links to move to the other notebooks.

1.3. Examples 5

https://github.com/rmsrosa/nbbinder/blob/master/tests/nb_builds/nb_alice/00.00-Alice%27s_Adventures_in_Wonderland.ipynb

NBBinder

1.3.3 Notebooks with subsections

By appropriately naming the files, we can have different formattings for the Table of Contents. For instance, if your
list of files is

00.00-Front_Page.ipynb
01.00-Introduction.ipynb
02.00-Project_Requirements.ipynb
03.00-The_History_of_Grammar.ipynb
04.00-Parts_of_Speech.ipynb
04.01-Nouns.ipynb
04.02-Verbs.ipynb
04.03-Adjectives.ipynb
04.04-Adverbs.ipynb
05.00-Sentences.ipynb
05.01-Complex_Sentences.ipynb
05.02-Compound_Sentences.ipynb
06.00-Paragraphs.ipynb
06.01-Descriptive.ipynb
06.02-Expository.ipynb
06.03-Narrative.ipynb
06.04-Persuasive.ipynb
07.00-Conclusion.ipynb
A0.00-Appendix.ipynb
BA.00-Glossary.ipynb
BB.00-Bibliography.ipynb
BC.00-Index.ipynb

we get, with a suitable configuration, the Table of Contents

Table of Contents
Front Page
1. Introduction
2. Project Requirements
3. The History of Grammar
4. Parts of Speech

4.1. Nouns
4.2. Verbs
4.3. Adjectives
4.4. Adverbs

5. Sentences
5.1. Complex Sentences
5.2. Compound Sentences

6. Paragraphs
6.1. Descriptive
6.2. Expository
6.3. Narrative
6.4. Persuasive

7. Conclusion
A. Appendix
Glossary
Bibliography
Index

See 00.00-Front-Page.ipynb for the actual bound version of the first notebook.

The binder for the notebooks in this collection is configured to include badges to render, in nbviewer, either the Jupyter
notebook itself or the exported version to markdown. The badge cell is located just below the header. Just click the

6 Chapter 1. Overview

https://github.com/rmsrosa/nbbinder/blob/master/tests/nb_builds/nb_grammar_bound/00.00-Front_Page.ipynb
https://nbviewer.jupyter.org/

NBBinder

badge with the mouse right button to open it. If clicking it with the right button, from within github, nothing will
happen.

1.3.4 Notebooks with preheaders

This is particularly useful for lectures notes. For instance, by naming your collection of notebooks as

00.00-Introduction.ipynb
01.00.Lecture-Math_Background.ipynb
01.01-Vector_Calculus.ipynb
01.02-Rigid_Motions.ipynb
02.00.Lecture-Kinematics.ipynb
02.01.Lecture-Velocity_and_Acceleration.ipynb
02.02.Lecture-Different_Types_of_Motions_and_Their_Components.ipynb
03.00.Lecture-Dynamics.ipynb
03.01..Part-Force_and_Momentum.ipynb
03.02..Part-Orbits_of_Planets_and_Satellites.ipynb
03.03..Part-Interception_and_Rendezvous.ipynb
04.00.Lecture-Trajectory_Optimization.ipynb
04.01.Lecture.Part-Performance.ipynb
04.02.Lecture.Part-Gravity_Turn.ipynb
04.03.Lecture.Part-Optimization.ipynb
AA.00-References.ipynb

we get, with a suitable configuration, the Table of Contents

Contents
Introduction
Lecture 1. Math Background

1.1. Vector Calculus
1.2. Rigid Motions

Lecture 2. Kinematics
Lecture 2.1. Velocity and Acceleration
Lecture 2.2. Different Types of Motions and Their Components

Lecture 3. Dynamics
Part 1. Force and Momentum
Part 2. Orbits of Planets and Satellites
Part 3. Interception and Rendezvous

Lecture 4. Trajectory Optimization
Lecture 4. Part 1. Performance
Lecture 4. Part 2. Gravity Turn
Lecture 4. Part 3. Optimization

References

See 00.00-Introduction.ipynb for the actual bound version of the first notebook.

Notice, above, different forms of displaying the parts of the same lecture note.

The binder for the notebooks in this collection is configured to include a badge to open them in nbviewer. The badge
is located just below the header. Just click the badge with the mouse right button to open it. If clicking it with the
right button, from within github, nothing will happen.

1.4 Notebooks with slides and cloud computing badges

The following configuration file is used in the collection of files present in the folder Water:

1.4. Notebooks with slides and cloud computing badges 7

https://github.com/rmsrosa/nbbinder/blob/master/tests/nb_builds/nb_alice/00.00-Alice%27s_Adventures_in_Wonderland.ipynb
https://nbviewer.jupyter.org/
https://github.com/rmsrosa/nbbinder/blob/master/tests/source/nb_water

NBBinder

Configuration file for the python module NBBinder

version: 0.13a

path_to_notes: nb_builds/nb_water

contents:
toc_nb_name: 00.00-Water_Contents.ipynb
toc_title: Table of Contents
show_index_in_toc: True

header: "[*NBBinder test on a collection of notebooks about some thermodynamic
→˓properperties of water*](https://github.com/rmsrosa/nbbinder)"

navigators:
core_navigators:
- 00.00-Water_Contents.ipynb
- BA.00-References.ipynb

show_nb_title_in_nav: True
show_index_in_nav: False

badges:
- title: Open in Google Colab
url: https://colab.research.google.com/github/rmsrosa/nbbinder/blob/master/tests/

→˓nb_builds/nb_water
src: https://colab.research.google.com/assets/colab-badge.svg

- title: Open in binder
url: https://mybinder.org/v2/gh/rmsrosa/nbbinder/master?filepath=tests/nb_builds/

→˓nb_water
src: https://mybinder.org/badge.svg

- title: View in NBViewer
url: https://nbviewer.jupyter.org/github/rmsrosa/nbbinder/blob/master/tests/nb_

→˓builds/nb_water
label: view in
message: nbviewer
color: orange

- title: View Slides
url: https://nbviewer.jupyter.org/github/rmsrosa/nbbinder/blob/master/tests/nb_

→˓builds/nb_water_slides
extension: .slides.html
label: view
message: slides
color: darkgreen

exports:
- export_path: nb_builds/nb_water_slides
exporter_name: slides
exporter_args:

reveal_scroll: True

After binding the collection, the folder Water bound collection is created. See 00.00-Water_Contents.ipynb for the first
notebook, containing the table of contents. Now, each notebook has a badge cell with badges to open the notebooks in
Google Colab, Binder, and nbviewer, and a final badge to open the associated Reveal.JS slides.

For the slides, the folder Water Slides is created via nbconvert, in accordance to the parameters associated with the key
exports in the configuration file.

The badge cell looks like

8 Chapter 1. Overview

https://github.com/rmsrosa/nbbinder/blob/master/tests/nb_builds/nb_water
https://github.com/rmsrosa/nbbinder/blob/master/tests/nb_builds/nb_water/00.00-Water_Contents.ipynb
https://colab.research.google.com/notebooks/intro.ipynb
https://mybinder.org
https://nbviewer.jupyter.org/
https://revealjs.com/
https://github.com/rmsrosa/nbbinder/blob/master/tests/nb_builds/nb_water_slides
https://nbconvert.readthedocs.io/en/latest/

NBBinder

1.4. Notebooks with slides and cloud computing badges 9

https://colab.research.google.com/github/rmsrosa/nbbinder/blob/master/tests/nb_builds/nb_water/00.00-Water_Contents.ipynb
https://mybinder.org/v2/gh/rmsrosa/nbbinder/master?filepath=tests/nb_builds/nb_water/00.00-Water_Contents.ipynb

NBBinder

10 Chapter 1. Overview

CHAPTER 2

Installation

The package can be installed from PyPi with

pip install nbbinder

It can also be downloaded directly from github.com/rmsrosa/nbbinder and installed, from the downloaded package
directory, with

pip install .

If you do not wish to install the package, you can simply download it and import it as a local module as follows:

• If the subdirectory nbbinder of the project is in the same folder as the script that will import it, simply do

import nbbinder as nb

• If the subdirectory nbbinder is in a different location, use

import os
import sys

sys.path.insert(0, os.path.abspath(os.path.join(os.getcwd(), 'path', 'from',
→˓'script', 'to', 'module')))

import nbbinder as nbb

In case of downloading the package and using it or installing it locally, you just need the file nbbinder.py in the
root directory‘.

11

https://pypi.org/project/nbbinder/

NBBinder

12 Chapter 2. Installation

CHAPTER 3

Usage

3.1 Numbering the collection of notebooks

NBBinder binds a collection of notebooks belonging to a specified directory.

In order to be processed, each notebook in the collection should start with a pair of file numberings, separated by a dot
and followed by a dash.

Each file numbering is composed of two characters. We refer to each of the file numberings as N1 and N2. Thus, a
notebook should have the form

N1.N2-notebookfilename.ipynb.

Each file numbering should be of one of the following forms:

• Two digits, from 00 to 99;

• An uppercase letter followed by a digit, from A0 to Z9;

• Two uppercase letters, from AA to ZZ.

Each file numbering is translated into a head numbering, for display in the table of contents and in the navigators.

The file numberings N1 and N2 are two hierarchical levels for the headings, such as “Chapter” and “Section”, or
“Section” and “Subsection”.

The translation from file to heading numbering can be summarized in the following table:

00 => empty string

01 to 09 => 1 to 9

10 to 99 => 10 to 99

A0 to Z0 => A to Z

A1 to Z9 => A1 to Z9

AA to ZZ => empty string

13

NBBinder

Notice that the file numbering 00 and the pure alphanumeric numberings AA to ZZ lead to an empty string, which
means no heading numbering is shown in the table of contents. This is intended to allow 00 to be used for the Front
Matter and AA to ZZ to be used for the Back Matter.

When used as the second level file numbering N2, the indices AA to ZZ can be used for non-numbering sections within
chapters.

The file numberings A0 to Z0 are mainly intended to be used for the Appendices. The file numberings A1 to Z9 can
also be used as such. They can appear either in the first level file numbering N1 or in the second level N2.

There is an exception to the above translation rule, which is when first level N1 is either 00 or any indice between AA
and ZZ. In those cases, not only the first level heading number is an empty string, but the second as well, regardless of
the value of N2. This is useful when the Front Matter is broken down into different notebooks. For example, instead
of a single notebook

00.00-Front_Matter.ipynb

with all the information for the Front Matter, we may have

00.00-Title_Page.ipynb
00.01-Preface.ipynb
00.02-Foreword.ipynb
00.03-Table_of_Contents.ipynb
00.04-List_of_Abbreviations.ipynb

They will appear in the table of contents without any heading numbering. Just with the markdown title of each
notebook (defined by the contents of the first heading # in the notebook).

We end this section with a translation table combining both levels N1 and N2:

00.00 to 00.ZZ => Chapters with no heading number

00.01 to 00.ZZ => Sections with no heading number

01.00 to 09.00 => Chapters 1 to 9

01.01 to 99.99 => Sections 1.1 to 99.99

01.A0 to 99.Z0 => Sections 1.A to 99.A

01.AA to 99.ZZ => Sections 1 to 9

A0.00 to Z0.00 => Chapters A to Z

A0.01 to Z0.99 => Sections A.1 to Z.99

A0.A0 to Z0.Z0 => Sections A.A to Z.Z

A0.AA to Z0.ZZ => Sections A to Z

A1.00 to Z9.00 => Chapters A1 to Z9

A1.01 to Z9.99 => Sections A1.1 to Z9.99

A1.A0 to Z9.Z0 => Sections A1.A to Z9.Z

A1.AA to Z9.ZZ => Sections A1 to Z9

AA.01 to ZZ.ZZ => Sections with no heading number

Some chapters and sections above have the same numbering. The difference between them is how they are indented
in the table of contents.

As an example, consider the following collection mentioned in the Section Overview:

14 Chapter 3. Usage

NBBinder

00.00-Front_Page.ipynb
02.00-Introduction.ipynb
04.00-Project_Requirements.ipynb
05.00-The_History_of_Grammar.ipynb
06.00-Parts_of_Speech.ipynb
06.02-Nouns.ipynb
06.03-Verbs.ipynb
06.05-Adjectives.ipynb
06.08-Adverbs.ipynb
08.00-Sentences.ipynb
08.01-Complex_Sentences.ipynb
08.03-Compound_Sentences.ipynb
09.00-Paragraphs.ipynb
09.01-Descriptive.ipynb
09.02-Expository.ipynb
09.03-Narrative.ipynb
09.04-Persuasive.ipynb
11.00-Conclusion.ipynb
AB.00-Appendix.ipynb
BA.00-Glossary.ipynb
BC.02-Bibliography.ipynb
BC.04-Index.ipynb

With the proper configuration, we obtain the Table of Contents

Table of Contents
Front Page
1. Introduction
2. Project Requirements
3. The History of Grammar
4. Parts of Speech

4.1. Nouns
4.2. Verbs
4.3. Adjectives
4.4. Adverbs

5. Sentences
5.1. Complex Sentences
5.2. Compound Sentences

6. Paragraphs
6.1. Descriptive
6.2. Expository
6.3. Narrative
6.4. Persuasive

7. Conclusion
A. Appendix
Glossary
Bibliography
Index

3.2 Numbering with preheaders

An extension to the previous numbering system is to allow for a preheader, so that we can write Part 1, Chapter
1, Appendix A.1, Lecture 1, and so on.

Preheaders are to be included by adding a dot between the file numbering N2 and the dash. We can have one or two
levels of preheaders. If there are two preheaders, another dot separates them. So we have the following options

3.2. Numbering with preheaders 15

NBBinder

N1.N2.Preheader1-notebookfilename.ipynb

and

N1.N2.Preheader1.Preheader2-notebookfilename.ipynb

They essentially work according to the following table

N1.N2.Preheader1 => Preheader1 N1.N2.

N1.N2.Preheader1.Preheader2. => Preheader N1. Preheader N2.

N1.N2..Preheader2 => Preheader N2.

Notice the first case, in which Preheader2 is empty, and compare it with the last case, in which Preheader1 is
empty. The first case includes both chapter and section numbers N1 and N2 in the heading numbers, which the last
one only includes the section number.

In accordance with the rule when there is no preheader, no numbering is included when N1 is translated into an empty
string, and no section numbering is included when N2 is translated into an empty string.

Recalling the example in the Overview section, suppose collection of notebooks is

00.00-Introduction.ipynb
01.00.Lecture-Math_Background.ipynb
01.01-Vector_Calculus.ipynb
01.02-Rigid_Motions.ipynb
02.00.Lecture-Kinematics.ipynb
02.01.Lecture-Velocity_and_Acceleration.ipynb
02.02.Lecture-Different_Types_of_Motions_and_Their_Components.ipynb
03.00.Lecture-Dynamics.ipynb
03.01..Part-Force_and_Momentum.ipynb
03.02..Part-Orbits_of_Planets_and_Satellites.ipynb
03.03..Part-Interception_and_Rendezvous.ipynb
04.00.Lecture-Trajectory_Optimization.ipynb
04.01.Lecture.Part-Performance.ipynb
04.02.Lecture.Part-Gravity_Turn.ipynb
04.03.Lecture.Part-Optimization.ipynb
AA.00-References.ipynb

Then, the Table of Contents becomes

Contents
Introduction
Lecture 1. Math Background

1.1. Vector Calculus
1.2. Rigid Motions

Lecture 2. Kinematics
Lecture 2.1. Velocity and Acceleration
Lecture 2.2. Different Types of Motions and Their Components

Lecture 3. Dynamics
Part 1. Force and Momentum
Part 2. Orbits of Planets and Satellites
Part 3. Interception and Rendezvous

Lecture 4. Trajectory Optimization
Lecture 4. Part 1. Performance
Lecture 4. Part 2. Gravity Turn
Lecture 4. Part 3. Optimization

References

Notice the different forms of subsectioning.

16 Chapter 3. Usage

NBBinder

3.3 The binding process

Binding is achieved with the function bind(). Depending on the arguments given, this function calls the following
functions, which take care of each of the main features of the notebook binder:

• reindex(): reorder the notebooks when a new notebook is to be inserted between others or whether there are
gaps in the indices;

• add_contents(): adds the Table of Contents to a selected “Contents” file;

• add_headers(): adds a header to each notebook with a given custom information;

• add_badges(): adds a badge cell to each notebook with one or more badges to open up the document in
different platforms or formats;

• add_navigators(): adds navigation bars to the top and bottom of each notebook.

• export_notebooks(): exports the notebooks to any of the different formats as provided by nbconvert:
HTML, LaTeX, PDF, Reveal JS, Markdown (md), ReStructured Text (rst), executable script. Notice that
add_badges() can be used to link to the exported notebooks, useful, for instance, to access slides of the
notebooks for presentation in class.

The arguments to the function bind() can be given directly or via a configuration file.

A common argument to all these functions is path_to_notes, which is a string denoting the folder in which the
notes are located. It is either an absolute path or a relative path from the script that calls nbbinder.bind(). The
remaining arguments are for each of the functions above.

We can start explaining the arguments to bind() by the first statements defining the function:

def bind(aux: str = None,
path_to_notes: str = None,
reindexing: list = None,
contents: list = None,
header: str = '',
navigators: list = None,
badges: list = None,
exports: list = None,
config_filename: str = None) -> None:

Except for aux, the aim of each of the arguments above are clear. Let us go through them in more detail, but leaving
aux to the end.

• path_to_notes: string with the path to the collection of the notebooks.

• reindexing: dictionary with the following keys to be unpacked as arguments to the function reindex():

– insert: boolean saying whether or not to insert notebooks in the collection;

– tighten: boolean saying whether or not to tighten the notebooks in the collection;

• contents: dictionary with the following keys to be unpacked as arguments to the function
add_contents():

– toc_nb_name: string with the filename of the notebook in which the table of contents is to be inserted;

– toc_title: string with a optional title to be placed in the start of the table of contents cell, such as
“Table of Contents” or, in other languages, “Conteúdo”, “Table des Matières”, and so on;

– show_index_in_toc: boolean saying whether or not to include the heading numbering in the table of
contents.

• header: string with the text to be shown in the header cell.

3.3. The binding process 17

https://pypi.org/project/nbconvert/

NBBinder

• navigators: dictionary with the following keys to be unpacked as arguments to the function
add_navigators():

– core_navigators: list of strings with the filenames of one or more notebooks to be added to the
navigator cells, such as that containing the table of contents, and the bibliography;

– show_nb_title_in_nav: boolean saying whether to display the name of the previous and the next
notebooks in the collection or simply to display the words previous and ‘next;

– show_index_in_nav: boolean saying whether to show the heading number along with the title of the
previous and the next notebooks in the collection or just the title.

• badges: list of dictionaries with each dictionary containing the keys to generate each badge. Each badge is an
html image link. The keys are

– title: string that goes into the arguments title and alt of the html image tag .

– url: string with the href link argument of the html anchor tag <a> for the badge link;

– extension: optional string with the extension that replaces the .ipynb extension when the badge
directs to a page with a different format, for instance, to slides or markdown generated by the function
export_notebooks();

– src: text with the url or local path to the badge image;

– label, message, and color: strings to build the badges in shields.io, which is used when src is not
present.

• exports: list of dictionaries with each dictionary containing the keys to export the notebooks to different
formats via nbconvert:

– export_path: string with the path where the exported files should be saved.

– exporter_name: string with the name of the exporter as understood by the module nbconvert, for
example slides, html, markdown, latex, pdf, and so on. See nbconvert: supported output formats;

– exporter_args: dictionary with extra arguments to be passed to nbconvert.

• config_filename: string with the absolute or relative path to the yaml configuration file.

• aux: Notice that all the arguments above are keyword arguments. But, in simple cases, to avoid writing down
the keyword names path_to_notes or config_filename, the argument aux reads the first argument
and checks whether it stands for a file or for a directory. If it is a file which ends with either .yml or .yaml,
then config_filename takes the value of aux. If it is a directory, then path_to_notes takes the value
of aux.

3.3.1 Default values

It is easier to see the default values of the parameters above by looking at the beginning of each function:

def reindex(path_to_notes: str = None,
insert: bool = True,
tighten: bool = False) -> None:

def add_contents(path_to_notes: str = None,
toc_nb_name: str = None,
toc_title: str = '',
show_index_in_toc: bool = True) -> None:

def add_headers(path_to_notes: str = None, header: str = None) -> None:

18 Chapter 3. Usage

https://shields.io/
https://nbconvert.readthedocs.io/en/latest/
https://nbconvert.readthedocs.io/en/latest/usage.html#supported-output-formats

NBBinder

def add_badges(path_to_notes: str = None, badges: list = None) -> None:

def add_navigators(path_to_notes: str = None,
core_navigators: list = None,
show_nb_title_in_nav: bool = True,
show_index_in_nav: bool = True) -> None:

def export_notebooks(path_to_notes: str = None,
export_path: str = None,
exporter_name: str = None,
exporter_args: dict = None) -> None:

3.4 Configuration file

The easiest way to create/update the structure of a collection of notebooks is by using a configuration file containing
all the desired arguments.

The configuration file is expected to be in the YAML format, which is a human-readable, text file, which easily stores
strings, integers, floating point numbers, booleans, lists, and dictionaries (and more). It is parsed to python via the
PyYAML module.

The function parses the configuration file to a python dictionary. The expected keys are the following:

YAML configuration file for NBBinder

version:

path_to_notes:

reindexing:
insert:
tighten:

contents:
toc_nb_name:
toc_title:
show_index_in_toc:

header:

badges:
- title:
url:
extension:
src:
label:
message:
color:

navigators:
core_navigators:
show_nb_title_in_nav:
show_index_in_nav:

(continues on next page)

3.4. Configuration file 19

https://en.wikipedia.org/wiki/YAML
https://pyyaml.org/

NBBinder

(continued from previous page)

exports:
- export_path:
export_name:
exporter_args:

The keys version and path_to_notes are the only mandatory ones. The remaining keys are optional. The key
version is checked for compatibility with the version of nbbinder.

The order of the main keys is not important; the module takes care of them regardless. There are some rules used in
the process:

3.5 Example of a configuration file

Here is the configuration file config_nb_alice.yml used for testing the package. It is available in the subdirec-
tory tests of the root directory of the repository.

Configuration file for the python module NBBinder

version: 0.13a

path_to_notes: nb_builds/nb_alice

contents:
toc_nb_name: 00.00-Alice's_Adventures_in_Wonderland.ipynb
toc_title: Table of Contents
show_index_in_toc: True

header: "NBBinder test on a collection of notebooks named after the chapters of 'Alice
→˓'s Adventures in Wonderland'"

navigators:
core_navigators:
- 00.00-Alice's_Adventures_in_Wonderland.ipynb

show_nb_title_in_nav: False
show_index_in_nav: False

3.6 Binding via the configuration file

Suppose the notebooks are in a subsubdirectory named nb_alice, as indicated by the key path_to_notes, in
the configuration file. The indexed notebooks are the following:

00.00-Alice's_Adventures_in_Wonderland.ipynb
01.00-Down_the_Rabbit-Hole.ipynb
02.00-The_Pool_of_Tears.ipynb
03.00-A_Caucus-Race_and_a_Long_Tale.ipynb
04.00-The_Rabbit_Sends_in_a_Little_Bill.ipynb
05.00-Advice_from_a_Caterpillar.ipynb
06.00-Pig_and_Pepper.ipynb
07.00-A_Mad_Tea-Party.ipynb
08.00-The_Queen's_Croquet-Ground.ipynb
09.00-The_Mock_Turtle's_Story.ipynb
10.00-The_Lobster_Quadrille.ipynb

(continues on next page)

20 Chapter 3. Usage

NBBinder

(continued from previous page)

11.00-Who_Stole_the_Tarts?.ipynb
12.00-Alice's_Evidence.ipynb

Then, we import the module in a script in the folder tests and use the bind() function with the configuration file
config_nb_alice.yml as argument:

import nbbinder as nbb
nbb.bind('config_nb_alice.yml')

Or we execute it as a script in the command line:

./nbbinder.py config_nb_alice.yml

We may visualize the result looking at a printscreen of the updated 00.
00-Alice's_Adventures_in_Wonderland.ipynb:

3.6. Binding via the configuration file 21

NBBinder

Screenshot
of Alice’s Adventures in Wonderland Jupyter notebook

3.7 Binding via arguments

Instead of using a configuration file, we may call bind() directly with the desired arguments:

22 Chapter 3. Usage

NBBinder

nbb.bind(
path_to_notes = 'nb_builds/nb_alice',
contents={

'toc_nb_name': "00.00-Alice's_Adventures_in_Wonderland.ipynb",
'toc_title': 'Table of Contents',
'show_index_in_toc': True

},
header="NBBinder test on a collection of notebooks named after the chapters of

→˓'Alice's Adventures in Wonderland'",
navigators={

'core_navigators': [
"00.00-Alice's_Adventures_in_Wonderland.ipynb"

],
'show_nb_title_in_nav': False,
'show_index_in_nav': False

}
)

3.7.1 Reindexing the notebooks

The function reindex() is useful when you want to include one (or more) notebooks in between two others or shift
the notebooks around. Say we have the notebooks

00.00-Front_Page.ipynb
01.00-Introduction.ipynb
02.00-Parts_of_Speech.ipynb
02.01-Nouns.ipynb
02.02-Adjectives.ipynb
02.03-Adverbs.ipynb
03.00-Sentences.ipynb
AA.00-Bibliography.ipynb

Suppose we want to add a new notebook The_History_of_Grammar.ipynb as Chapter 2 and a new notebook
Verbs.ipynb as Section 2.2, moving up the other Chapters and Sections. For that, we write the notebook and name
it with added character & in the proper place, depending whether it is to be a new chapter or a new section:

00.00-Front_Page.ipynb
01.00-Introduction.ipynb
02&.00-The_History_of_Grammar.ipynb
02.00-Parts_of_Speech.ipynb
02.01-Nouns.ipynb
02.02&-Verbs.ipynb
02.02-Adjectives.ipynb
02.03-Adverbs.ipynb
03.00-Sentences.ipynb
AA.00-Bibliography.ipynb

Usually, the notebook with the character & is not recognized as an indexed notebook and is not included in the collec-
tion of notebooks to be bound. However, if bind() (or reindex()) is called with the argument insert as True,
then the notebooks are renamed and the collection becomes

00.00-Front_Page.ipynb
01.00-Introduction.ipynb
02.00-The_History_of_Grammar.ipynb
03.00-Parts_of_Speech.ipynb

(continues on next page)

3.7. Binding via arguments 23

NBBinder

(continued from previous page)

03.01-Nouns.ipynb
03.02-Verbs.ipynb
03.03-Adjectives.ipynb
03.04-Adverbs.ipynb
04.00-Sentences.ipynb
AA.00-Bibliography.ipynb

If one wants to include two (or more) consecutive notebooks at a time, just add a lower case letter after &, say &a, &b,
and so on.

Moreover, if we now want to move the Section “The History of Grammar” to an Appendix, we may rename 02.
00-The_History_of_Grammar.ipynb to A0.00-The_History_of_Grammar.ipynb. This leaves a
gap in between Chapters 1 and 3:

00.00-Front_Page.ipynb
01.00-Introduction.ipynb
03.00-Parts_of_Speech.ipynb
03.01-Nouns.ipynb
03.02-Verbs.ipynb
03.03-Adjectives.ipynb
03.04-Adverbs.ipynb
04.00-Sentences.ipynb
A0.00-The_History_of_Grammar.ipynb
AA.00-Bibliography.ipynb

Then, if bind() (or reindex()) is called with the argument tighten as True, the notebooks are renamed and
the collection becomes

00.00-Front_Page.ipynb
01.00-Introduction.ipynb
02.00-Parts_of_Speech.ipynb
02.01-Nouns.ipynb
02.02-Verbs.ipynb
02.03-Adjectives.ipynb
02.04-Adverbs.ipynb
03.00-Sentences.ipynb
A0.00-The_History_of_Grammar.ipynb
AA.00-Bibliography.ipynb

3.8 Cell markers

The cells for the Table of Contents, the headers, the badges, and the navigators are marked with specific html
comments, so they do not show up when the cells are rendered, except when editing the cell. The markers are
automatically included by the module.

Except for the Table of Contents, NBBinder automatically removes any previous marked cell for cleaning up pur-
poses. In particular, the location of these other marked cells are always the same. As for the Table of Contents,
however, only its contents is deleted. If you desire to add the Table of Contents in a particular place inside a note-
book, just add the marker to that place, or move a previously generated Table of Contents to the desired position.

The markers are python constants and are given as

TOC_MARKER = "<!--TABLE_OF_CONTENTS-->"

(continues on next page)

24 Chapter 3. Usage

NBBinder

(continued from previous page)

HEADER_MARKER = "<!--HEADER-->"

BADGES_MARKER = "<!--BADGES-->"

NAVIGATOR_MARKER = "<!--NAVIGATOR-->"

Their names speak for themselves.

The cell has to start with one of theses markers to be understood as the appropriate cell.

The header cell is always the first one in the notebook, when present.

The navigator cells appear in two places in each notebook: as the last cell, for the bottom navigators, and as either the
first or the second cell, depending on whether there is a header cell or not.

The Table of Contents cell can vary in position. It can be given a priori at some place in the notebook file, or it can
be inserted automatically by NBBinder. In the former case, the author of the notebook is responsible for opening up
a cell and typing up the marker in the beginning of the cell, or just wait for the first run of nbbinder to place it in the
standart position and them move it somewhere else. The standart position set up by NBBinder is either the second to
last cell, if there is a bottom navigator cell, or as the very last cell, otherwise. It must be stressed that the module will
first look for the marker somewhere in the notebook and use the corresponding cell if it finds it. Only if it doesn’t find
it is that it will add a cell as the last or second to last cell.

3.8. Cell markers 25

NBBinder

26 Chapter 3. Usage

CHAPTER 4

Requirements

4.1 For the main module nbbinder

The nbbinder module uses the standard libraries

• os

• sys

• re

• itertools

• logging

• typing

• urllib

and the nonstandard libraries

• packaging

• nbformat,

• nbconvert

• pyyaml.

The nbformat library is used to interact with the jupyter notebooks, the nbconvert library is used to export the
notebooks to other formats (e.g. slides, markdown, pdf), the yaml package is used, of course, to read the *.yml
configuration files, and the packaging library is to compare the version of the nbbinder module with the version
in the configuration file and check for compatibility.

4.2 For testing the module

For testing nbbinder, the scripts in the tests subdirectory also use the standard module

27

https:/docs.python.org/3/library/os.html
https:/docs.python.org/3/library/sys.html
https:/docs.python.org/3/library/re.html
https:/docs.python.org/3/library/itertools.html
https:/docs.python.org/3/library/logging.html
https:/docs.python.org/3/library/typing.html
https://docs.python.org/3/library/urllib.html
https://pypi.org/project/packaging/
https://pypi.org/project/nbformat/
https://pypi.org/project/nbconvert/
https://pypi.org/project/PyYAML/

NBBinder

• shutil

and the nonstandard module

• faker

4.3 For packaging the module

Exclusively for packaging nbbinder for PyPI and TestPyPI, the following nonstandard package is used:

• setuptools

28 Chapter 4. Requirements

https:/docs.python.org/3/library/shutil.html
https://pypi.org/project/faker/
https://pypi.org
https://test.pypi.org/
https://pypi.org/project/setuptools/

CHAPTER 5

Credits

This package is based on modules available in the subdirectory tools of the Python Data Science Handbook, by Jake
VanderPlas.

In February 2018, I modified and packaged the tools as a single module named jupyterbookmaker. This was
used in my classroom notes on Mathematical Modelling, taught on early 2018. The notes are available (in Portuguese)
at the github repository for Modelagem Matemática - IM/UFRJ.

At the end of 2019, the package was significantly improved and renamed nbbinder.

29

https://github.com/jakevdp/PythonDataScienceHandbook/tree/master/tools
https://github.com/jakevdp/PythonDataScienceHandbook
http://vanderplas.com/
http://vanderplas.com/
https://github.com/rmsrosa/jupyterbookmaker
https://github.com/rmsrosa/modelagem_matematica.
https://github.com/rmsrosa/nbbinder

NBBinder

30 Chapter 5. Credits

CHAPTER 6

License

The work in this package is licensed under the MIT license.

This is a modified work based on a few scripts in Python Data Science Handbook/tools, which is considered as the
original work, licensed by Jake VanderPlas under the MIT license.

See the file LICENSE in the root directory of the project.

31

https://opensource.org/licenses/MIT
https://github.com/jakevdp/PythonDataScienceHandbook/tree/master/tools
http://vanderplas.com/
https://opensource.org/licenses/MIT

NBBinder

32 Chapter 6. License

CHAPTER 7

nbbinder

NBBinder generates a navigable book-like structure to a collection of Jupyter notebooks.

nbbinder.add_badges(path_to_notes: str = None, badges: list = None)→ None
Adds badges to each notebook in the collection.

Adds a badge cell with one or more badges to each notebook in the collection of indexed notebooks in the folder
path_to_notes. The information for creating each badge is in the list badges.

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• badges (list of dict) – A list of dictionaries with the necessary information to add
the badges.

Each item in the list is a dictionary which should have the keys title (str), url (str), an optional
extension (str), and either src or the three keys label (str), message (str), and color (str).

The key url is used for building link address, with the href argument being composed of the
given url appended by the nam of the corresponding notebook.

The keys label, message, and color are used to build the badge image via the shields.io
constructor, which will then become the argument src of the badge image. Alternatively, one
can provide a direct src link to the badge image. The key title complements the information
of the image.

The key extension is used in case there is a need to replace the .ipynb extension of each
notebook to the appropriate extension, e.g .md, .slides.html, .pdf, .py, .tex, and so on. If
extension is omitted, no replacement occurs.

nbbinder.add_contents(path_to_notes: str = None, toc_nb_name: str = None, toc_title: str = ”,
show_index_in_toc: bool = True)→ None

Adds the table of contents to a selected notebook.

It adds the table of contents, generated from the collection of notebooks in the directory path_to_notes, to the
notebook toc_nb_name, with toc_title as the title of the Table of Contents. The inclusion, or not, of the Chapter
and Section numbers in the table of contents is indicaded by the argument show_index_in_toc.

33

NBBinder

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• toc_nb_name (str) – filename of the notebook in which the table of contents is to be
inserted

• toc_title (str) – Text to be displayed as the title for the table of contents cell, e.g.
‘Contents’, ‘Table of Contents’, or in other languages, ‘Conteúdo’, ‘Table des Matières’,
and so on.

• show_index_in_toc (bool) – Whether to display the navigator with the chapter and
section number of each notebook or just their title.

nbbinder.add_headers(path_to_notes: str = None, header: str = None)→ None
Adds header to each notebook in the collection.

It adds the provided header‘as the first cell of each notebook in the collection of indexed notebooks in the folder
‘path_to_notes.

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• header (str) – The string with the text to be shown in the header cell.

nbbinder.add_navigators(path_to_notes: str = None, core_navigators: list = None,
show_nb_title_in_nav: bool = True, show_index_in_nav: bool =
True)→ None

Adds navigators to each notebook in the collection.

Adds top and bottom navigators to each notebook in the collection of indexed notebooks in the folder
path_to_notes.

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• core_navigators (list of str) – A lists of strings with the filenames of each
notebook to be included in the navigators, in between the links to the “previous” and the
“next” notebooks.

• show_nb_title_in_nav (bool) – Whether to diplay the title of the notebook in the
previous and next links or just display the words ‘Previous’ and ‘Next’.

• show_index_in_nav (bool) – Whether to display the navigator with the chapter and
section number of each notebook or just their title.

nbbinder.bind(aux: str = None, path_to_notes: str = None, reindexing: dict = None, contents: dict =
None, header: str = ”, navigators: dict = None, badges: list = None, exports: list = None,
config_filename: str = None)→ None

Binds the collection of notebooks.

It binds the collection of notebooks from either a configuration file config_filename or from the given arguments.

Parameters

• aux (str) – It allows for the first argument to be a non keyword argument which can
be either the config_filename (if it ends in .yaml or .yml) or the path_to_notes (otherwise).
These can also be given with the corresponding keyword arguments mentioned below.

34 Chapter 7. nbbinder

NBBinder

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• reindexing (dict) – A dict with the keys insert and tighten for the function reindex().

• contents (dict) – A dict with the keys toc_nb_name, toc_title, and show_index_in_toc
for the function add_contents().

• header (str) – The string with the text to be shown in the header cell.

• navigators (dict) – A dict with the keys core_navigators, show_nb_title_in_nav, and
show_index_in_nav for the function add_navigators()

• badges (list) – A list of dictionaries with keys to composing each badge in the cell. See
the function add_badge() for details.

• exports (list) – A list of dictionaries with each dictionary containing the keys ex-
port_path, exporter_name, and exporter_args used by the function export_notebooks().

• config_filename (str) – The filename of the configuration file.

nbbinder.cleanup_marker_cells(path_to_notes: str = None, marker: str = None, mode: str = ’re-
move’)→ None

Removes or clears the contents of any cell with the given marker.

Depending on the value of the argument mode, it removes all the cells with the given marker from all the indexed
notebooks in path_to_notes, if mode == ‘remove’, or clears the contents of these cells (leaving the marker in
the cell), if mode == ‘clear’.

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• marker (str) – The marker to be searched for.

• mode (str) – A string which should be either ‘remove’ or ‘clear’.

nbbinder.export_notebooks(path_to_notes: str = None, export_path: str = None, exporter_name:
str = None, exporter_args: dict = None)→ None

Export notebooks via nbconvert.

It reads all the indexed notebooks in path_to_notes and export them to the directory export_path using the
exporter defined by exporter_name, with the arguments in exporter_args.

The name of the exporter (exporter_name) must be one of the default exporters listed in nbcon-
vert.exporters.get_export_names().

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• export_path (str) – The path to the directory where the exported, or converted, files
should be saved in.

• exporter_name (str) – The name of the exporter to be used in nbconvert via
nbconvert.exporters.get_exporter(exporter_name). Possible choices are ‘markdown’, ‘pdf’,
‘slides’, ‘latex’, etc.

• exporter_args (dict) – Arguments, if any, to be passed on to the exporter via nbcon-
vert.exporters.get_exporter(exporter_name)(**exporter_args).

nbbinder.get_badge_entries(path_to_notes: str = None, badges: list = None)→ Iterable[tuple]
Iterable with the bagdes info for each notebook.

35

NBBinder

It reads the indexed notebooks in the folder path_to_notes and generates an iterable with the information needed
to build the badges for each notebook.

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• badges (list of dict) – A list of dictionaries with the necessary information to add
badges. See the docstring of add_badges() for the explanation of required and optional
key-value pairs in each dictionary.

Yields

• str – Path to current notebook in the iterator.

• list – The list of badge links for the current notebook in the iterator.

nbbinder.get_contents(path_to_notes: str = None, toc_title: str = ”, show_index_in_toc: bool =
True)→ str

Returns the ‘Table of Contents’.

Returns a string with the ‘Table of Contents’ constructed from the collection of notebooks in the folder indicated
by the argument path_to_notes.

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• toc_title (str) – Text to be displayed as the title for the table of contents cell, e.g.
‘Contents’, ‘Table of Contents’, or in other languages, ‘Conteúdo’, ‘Table des Matières’,
and so on.

• show_index_in_toc (bool) – Whether to display the table of contents with the chapter
and section number of each notebook or just their title.

Returns The table of contents.

Return type str

nbbinder.get_navigator_entries(path_to_notes: str = None, core_navigators: list = None,
show_nb_title_in_nav: bool = True, show_index_in_nav: bool
= True)→ Iterable[str]

Iterable with the navigator info for each notebook.

It reads the indexed notebooks in the folder path_to_notes and generates an iterable with the information needed
to build the navigators for each notebook.

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• core_navigators (list of str) – A lists of strings with the filenames of each
notebook to be included in the navigators, in between the links to the “previous” and the
“next” notebooks.

• show_nb_title_in_nav (bool) – Whether to diplay the title of the notebook in the
previous and next links or just display the words ‘Previous’ and ‘Next’.

• show_index_in_nav (bool) – Whether to display the navigator with the chapter and
section numbers of each notebook or just their title.

Yields

36 Chapter 7. nbbinder

NBBinder

• str – Path to current notebook in the iterator.

• str – Contents of the navigation bar for the current notebook in the iterator.

nbbinder.get_nb_entry(path_to_notes: str = None, nb_name: str = None, show_index: bool = True)
→ str

Returns the entry of a notebook.

This entry is to be used for the link to the notebook from the table of contents and from the navigators. De-
pending on the value of the argument show_index, the entry can be either the full entry provided by the function
get_nb_full_entry() or simply the title of the notebook, provided by the function get_nb_title().

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• nb_name (str) – The name of the jupyter notebook file.

• show_index (boolean) – Indicates whether to include the chapter and section numbers
of the notebook in the table of contents (if True) or just the title (if False).

Returns entry – A string with the entry name.

Return type str

nbbinder.get_nb_full_entry(path_to_notes: str = None, nb_name: str = None)→ list
Returns the full entry of a notebook.

This entry is to be used for the link to the notebook from the table of contents and from the navigators.

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• nb_name (str) – The name of the jupyter notebook file.

Returns

• md_pre_entry (str) – The type of markdown header or identation for the entry in Table of
Contents

• idx_entry (str) – The index entry, with the Chapter and Section numbers or letters.

• title (str) – The title of the notebook, as obtained from get_nb_title().

nbbinder.get_nb_title(path_to_notes: str = None, nb_name: str = None)→ str
Returns the title of a juyter notebook.

It looks for the first cell, in the notebook, that starts with a single markdown symbol ‘#’ and returns the contents
of the first line of this cell, striped out of ‘# ‘ and of any remaining lines.

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• nb_name (str) – The name of the jupyter notebook file.

Returns The desired title of the notebook or None if not found.

Return type str

nbbinder.increase_index(idx: str)→ str
Increases an index by one unit.

37

NBBinder

If the index is numeric, in the range ‘00’ to ‘98’, it adds one to the index and returns an index in the range ‘01’
to ‘99’. If the index is already ‘99’, there is an Exception error.

If the index is alphanumeric, with the first character being a letter and the second character being a digit in the
range ‘0’ to ‘8’, the digit is increased by one, and the function returns an index with the same first letter and
with the digit in the range ‘1’ to ‘9’. If the digit is already ‘9’, there is an Exception error.

If the index is purely alphabetical, then the ordinal ascii number of the letter is increased by 1, with the function
returning an index with the same first character and with the second character in the range ‘B’ to ‘Z’. If the
second character is already ‘Z’, there is an Exception error.

It also raises an exception if the given argument is not an index.

Parameters idx (str) – The index to be increased by one unit.

Returns The index increased by one unit.

Return type str

Raises

• Exception if string is not an index.

• Exception if index is increasead beyond the allowed range.

nbbinder.indexed_notebooks(path_to_notes: str = None)→ list
Returns a sorted list with the filenames of the “indexed notebooks”.

The notebooks are expected to be in the folder indicated by the argument path_to_notes. The “indexed note-
books” are those that match the regular expression REG. Filenames that do not match this regular expression
are ignored.

Parameters path_to_notes (str) – The path to the directory that contains the notebooks, ei-
ther absolute or relative to the script that calls nbbinder.bind().

Returns A list with the filenames of the notebooks that match the regular expression, ordered by the
lexicographycal order.

Return type list of str

nbbinder.insert_notebooks(path_to_notes: str = None)→ None
Includes a notebook in the colllection.

Checks whether there is any notebook that matches the regular expression indicating it is to be incuded in the
collection of indexed notebooks and, if so, renames the affected notebooks in the appropriate order.

Parameters path_to_notes (str) – The path to the directory that contains the notebooks, ei-
ther absolute or relative to the script that calls nbbinder.bind().

nbbinder.prev_this_next(collection: list = None)→ None
Iterable with previous, current, and next notebooks in collection.

It reads a list of indexed notebooks and gives an iterable with the previous, current, and next notebooks for each
notebook in the list.

Parameters collection (list of str) – The collection of indexed notebooks.

Yields

• str – A string with the filename of the previous notebook in the iteration.

• str – A string with the filename of the current notebook in the iteration.

• str – A string with the filename of the next notebook in the iteration.

38 Chapter 7. nbbinder

NBBinder

nbbinder.reindex(path_to_notes: str = None, insert: bool = True, tighten: bool = False)→ None
Reindex the collection of notebooks.

Reindex the notebooks by inserting (via insert_notebooks()) and/or tightening (calling tighten_notebooks()) the
collection of notebooks, depending on whether the corresponding arguments are True or False.

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• insert (bool) – Whether to insert notebooks in the collection or not.

• tighten (bool) – Whether to tighten the indices of notebooks or not.

nbbinder.tighten_notebooks(path_to_notes: str = None)→ None
Tighten the indices of the notebooks in the colllection.

Checks whether there are gaps in the indices of the notebooks and, if so, renames the affected notebooks in the
appropriate order.

Parameters path_to_notes (str) – The path to the directory that contains the notebooks, ei-
ther absolute or relative to the script that calls nbbinder.bind().

nbbinder.yield_contents(path_to_notes: str = None, show_index_in_toc: bool = True) → Iter-
able[str]

Iterable with entries for each of the indexed notebooks.

It takes all the indexed notebooks and it creates a generator function to iterate from one notebook to the next,
returning, each time, the navigator entry associated with that notebook.

Parameters

• path_to_notes (str) – The path to the directory that contains the notebooks, either
absolute or relative to the script that calls nbbinder.bind().

• show_index_in_toc (bool) – Whether to display the navigator with the chapter and
section number of each notebook or just their title.

Yields Iterable[str] – Next navigator entry in the iterator

39

NBBinder

40 Chapter 7. nbbinder

CHAPTER 8

Indices:

• genindex

• modindex

41

NBBinder

42 Chapter 8. Indices:

Python Module Index

n
nbbinder, 33

43

NBBinder

44 Python Module Index

Index

A
add_badges() (in module nbbinder), 33
add_contents() (in module nbbinder), 33
add_headers() (in module nbbinder), 34
add_navigators() (in module nbbinder), 34

B
bind() (in module nbbinder), 34

C
cleanup_marker_cells() (in module nbbinder),

35

E
export_notebooks() (in module nbbinder), 35

G
get_badge_entries() (in module nbbinder), 35
get_contents() (in module nbbinder), 36
get_navigator_entries() (in module nbbinder),

36
get_nb_entry() (in module nbbinder), 37
get_nb_full_entry() (in module nbbinder), 37
get_nb_title() (in module nbbinder), 37

I
increase_index() (in module nbbinder), 37
indexed_notebooks() (in module nbbinder), 38
insert_notebooks() (in module nbbinder), 38

N
nbbinder (module), 33

P
prev_this_next() (in module nbbinder), 38

R
reindex() (in module nbbinder), 38

T
tighten_notebooks() (in module nbbinder), 39

Y
yield_contents() (in module nbbinder), 39

45

	Overview
	Installation
	Usage
	Requirements
	Credits
	License
	nbbinder
	Indices:
	Python Module Index
	Index

